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Abstract

We present an automation technique for the growth of electron beam
deposited tips on whole wafers of atomic force microscope cantilevers. This
technique uses pattern recognition on scanning electron microscope images
of successive magnifications to precisely place the tips on the cantilevers.
We demonstrate the capabilities of the working system on a four-inch wafer
of microfabricated small cantilevers with a total of approximately 2100

levers per week.

1. Introduction

Atomic force microscopes (AFMs) generate an image of
sample topography by raster-scanning a cantilever with a sharp
tip at the end over the sample while monitoring the cantilever
deflection [1, 2].

In early AFMs, a sharp diamond fragment was glued
to the cantilever to form a tip [3]. Today, commercial
AFM cantilevers are micromachined using photolithography
techniques [4, 5], and have integrated tips. Another kind of
tip that has been used since the early days of AFMs, and is
still used for some experiments today, is the electron beam
deposited (EBD) tip [6-11]. EBD tips grow when an electron
beam is focused onto a conductive surface inside a vacuum
that has been contaminated with organic molecules [11]. EBD
tips show superior properties over integrated tips, such as high
aspectratio [7, 9, 12], hydrophobic surface properties [13—15],
high elastic modulus [16], low thermal mass [17], abrasion
resistance, and generic tip angle [18]. The shape of EBD tips
can be modified by etching with areactive plasma[9, 12]. EBD
tip composition and conductivity can be controlled by selecting
suitable contaminants (precursors) [19, 20]. EBD tips provide
a convenient way for tip formation on prototype or custom
probes [21-23]. The reason for their rarity in experiments is
the fact that, so far, they have had to be grown individually by
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a person operating the scanning electron microscope (SEM).
The main challenges in automating this process are the proper
placement of the tips on the AFM cantilever to sub-micron
precision throughout a wafer, and a reliable auto-focus [24].
Here we present a system that we developed to add EBD tips to
small AFM cantilevers developed in this laboratory previously
by Viani [25-28], with the capability to automatically grow
tips on cantilevers on a four-inch wafer, and capacity of
approximately 2100 EBD tips per week. The system uses
pattern recognition® to find the cantilevers and position the
tips.

2. System architecture

2.1. Hardware

As an electron beam source, we use a Jeol JSM-5300 LV SEM
with a tungsten cathode. The x and y handles on the sample
stage were fitted to stepper motors, which are controlled by
a two-channel stepper indexer with an RS-232 interface. For
SEM control, the beam position, zoom, coarse and fine focus
and intensity signals were tapped inside the SEM (figure 1),
and connected to a National Instruments DAQ board (figure 1).

3 National_Instruments. IMAQ Vision. In.
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Figure 1. Simplified diagram of the system.

2.2. Software

The software was written in LabView, and consists of
80 sub-VIs (sub-programs), each of which belongs to
one of several function groups (figure 1). A layer of
hardware driver VIs provides robust communication and unit
conversion/calibration. The image capture functional group
extracts the current SEM image from the sampled beam x/y
and intensity signals, compensates for image centre offsets,
and provides scale information for these images.

The chip level program group implements all process steps
for the treatment of one chip on the wafer. It calls several
basic functions that control the SEM, such as zoom, auto-
focus, move stage, match pattern, and grow tip. For a new
type of cantilever chip, these commands are evoked manually
to find the cantilevers on the chip, focus on them and grow
tips. During this teach-in step, all commands are saved in the
form of a macro language for later automated execution on all
other chips. This macro language also provides for branching,
sub-program calls, error handling, and logging.

The wafer level program group is an environment that
edits and later recalls the coarse layout of the wafer, that is,
the position of all cantilever chips, and their respective chip
type. During execution, the wafer level program moves the
SEM stage to the position of a chip, then calls the chip level
program group with the proper chip type as a parameter. On
return, it colour codes the chip on the screen, green for success,
red for errors. The operator can select any group of chips and
start the program, then watch the progress on the wafer as the
chip symbols change colour. This view can also be remotely
monitored over the internet. After execution, the chip symbols
can be selected to display their log-files and logged images for
quality control and debugging.

To find the cantilevers on a chip, the system identifies
features in the SEM image using pattern recognition. After a
structure is recognized, all following moves are referenced to
that structure. After multiple iterations of recognizing features
and then zooming in, the cantilever is found and centred. The
pattern recognition used is IMAQ Vision, a commercial add-on
package for LabView. For the production of sharp EBD tips,
it is critical to optimally focus the electron beam on the target
surface. The auto-focus routine is invoked before growing
each tip. It consists of a coarse focus step that controls the
coarse focus buttons on the SEM, and a fine focus step that
controls the SEM’s fine focus voltage. To evaluate the current
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focus, a slow single line scan is performed over the edge of the
cantilever. The resulting function consists of a high plateau in
the cantilever region, a downward slope in the edge region, and
a low plateau off the cantilever. This function is then fitted,
and the parameter for the steepness of the downward slope
represents the sharpness of the edge and, hence, the focus
quality. Sweeping the SEM’s focus controls, this parameter
can be maximized to auto-focus the electron beam.

The alternative approach of taking the derivative of the line
scan, which in the edge region represents the beam profile, and
minimizing the deviation of a Gaussian fit turned out to be less
robust in the fit step.

Because the system works without supervision on
precious full wafers, robustness was an important design
parameter. The system has to recognize and handle errors in
the process in a non-destructive way, automatically recover
if possible, and document success and failure in a way
recognizable by the user. Errors in the process are recognized
when the system fails to find features that should be there, or
fails to auto-focus. When this happens, the system recovers at
the earliest process step that does not depend on the failing step.
Progress of execution and log-entries are routinely backed up
on hard drive to minimize yield losses due to possible computer
crashes and power failures.

3. System test

After a series of smaller test runs, a four-inch wafer of
approximately 300 small silicon nitride cantilever chips with
seven cantilevers per chip was prepared for EBD tip growth.
200 A of Cr—Au were thermally evaporated onto the cantilevers
to provide conductivity and enhance the reflectivity of the AFM
cantilevers. Next, the wafer was dipped into dilute paraffin oil
solution to create a thin film of paraffin oil on the wafer surface.
This film provides the organic that is later polymerized into
EBD tips by the electron beam.

Then, the wafer was mounted inside a specially designed
frame that attaches to the SEM stage. The frame provides good
grounding of the gold coating on the wafer through a Be—Cu
spring washer.

After insertion into the SEM, the coarse position and
alignment of the wafer inside the chamber were manually
referenced by two reference points on the wafer. The coarse
position of all chips on the wafer was then programmed.
Next, a chip-level program was written using the teach-
in environment: first, an image of the whole chip at low
magnification is trained into the system, then a relative move
and zoom step centre the cantilever array in the view-field.
The next reference image is of the cantilever array. From
there, relative moves to the individual cantilevers, followed
by another zoom step, bring single cantilevers into the view-
field. At each cantilever, the program calls the same sub-
program that recognizes and centres the cantilever (figure 2),
then calls the auto-focus command, then positions the beam
at the designated point for EBD tip growth and turns off the
SEM’s beam scanning unit. After a defined dwell-time, the
SEM takes an image for the log-file, and the sub-program
returns for execution of the next cantilever.

Once this sequence has been programmed, the wafer-level
program moves the stage to each chip, then calls the chip-level
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Figure 2. The steps of zooming into a cantilever. The framed area
has been matched to a reference image by the pattern recognition.
(a) Top view of the front part of a cantilever chip, 50 x
magnification. (b) Front edge with cantilever array, 500x (c) single
cantilever, 10000 x.

1 2

Figure 3. SEM micrographs of five finished EBD tips, in side view
and top view. The tips were selected randomly from locations across
the wafer.

program to execute the sequence on that chip. A series of
all logged images for each chip can later be viewed from the
wafer-level program.

4. Results

The wafer described above was fully processed within a week.
In this time, approximately 2100 EBD-tips with tip radii of
56 £ 7 nm and a length of 818 + 261 nm (figure 3) were
grown on the cantilevers. We ascribe the relatively large tip
radius to the limited resolution of our SEM. Others [11, 18]
routinely achieve tip radii of 3 nm after sharpening [18]. The
variation in tip length of 28% is also relatively large; however,
the variation in the length of tips grown consecutively on a
given chip is only 3.4 £ 1.9%. This indicates a change in tip
length over extended periods of time, which could be caused
by filament deterioration, or other factors.

The system recognized and marked all locations with
defective or missing chips or cantilevers, and showed a rate
of failure to grow tips on existing cantilevers of approximately
0.2%.

The average positioning error of the tip on the cantilever
was measured from the seven tips of five cantilevers randomly
picked from across the wafer, and determined to be 154 nm
(figure 4).

The only required user interventions were an exchange of
the SEM cathode after about 100 h, and a daily readjustment
of the cathode current. The cathode current was adjusted to
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Figure 4. Distribution of tip radii and positioning errors on
cantilevers.

Figure 5. AFM image of DNA on mica, scanned in liquid in 25 s
using a small (width = 5 um) SiN prototype cantilever with
automatically grown EBD tip. DNA line width approximately
20 nm.

just below the second peak in the SEM’s imaging intensity in
compliance with the SEM manual, and slight changes from this
position could be observed on the timescale of a day. Though
these adjustments were not very time consuming, they could
certainly also be automated by giving the computer control
over the cathode current. Other cathode types with a longer
lifetime could also render user interventions unnecessary.

We found that when using paraffin oil coated wafers,
venting the SEM with dry gas is critical, because condensation
destroys the oil film, and we were not able to strip and re-coat
the wafer with sufficient uniformity.

To consider the economy of automating EBD tip growth,
assume the total cost of a trained technician to be $60 h=!. At
a rate of 12 tips h™!, the technician cost saved by automation
is $5 per EBD tip.

EBD tips automatically grown on small cantilevers
with this system are now in routine use in our AFM
experiments [29, 30]. Figure 5 shows an image of DNA on
mica [31, 32] acquired with a small cantilever, and one of
these tips in only 25 s. The measured line width of the DNA
is approximately 20 nm, a typical value for AFM imaging of
DNA.
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